3 research outputs found

    Single-step synthesis of a polyelectrolyte complex hollow-fiber membrane for forward osmosis

    Get PDF
    We present the simultaneous synthesis of a hollow fiber membrane with a selective layer created by means of polyelectrolyte complexation (PEC), to be used as a membrane in forward osmosis. The aim of this single-step approach was to create a defect-free robust selective layer and circumvent the challenges associated with coating via interfacial polymerization. The nascent hollow fiber membrane with a PEC layer was characterized by SEM imaging as well by determining the streaming potential and pure water permeance. We also evaluated several electrolytes as potential draw solutes in combination with the developed membrane and selected trisodium citrate (TSC) as it showed a very high rejection of 97 ± 2%. Using 1 M TSC as draw solution showed promising osmotic performance in selective layer facing feed solution (FO) mode, having a water flux of 7.8 ± 0.2 (L·m−2⋅h−1) and a reverse salt flux of 2.1 ± 0.7 (g·m−2⋅h−1). A significantly higher reverse salt flux of was gained in PRO mode which was attributed to the high ionic strength of the charged draw solute near the PEC layer. It is highlighted that the choice of draw solute as well as process orientation (FO or PRO mode) are crucial for charged selective layers such as our PEC selective layer. We conclude that our approach shows substantial promise for use in FO processes using TSC as the draw solution. In addition, the taken approach successfully eliminates the time-consuming and challenging extra step of coating hollow fibers through interfacial polymerization, opening up opportunities for the cost-effective synthesis of FO hollow-fiber membranes

    Increasing the success rate of interfacial polymerization on hollow fibers by the single-step addition of an intermediate layer

    Get PDF
    In this paper, we introduce a single-step process that incorporates an intermediate layer on a hollow fiber to enhance the final membrane performance after interfacial polymerization (IP). This intermediate layer is applied during hollow-fiber spinning by complexation of two oppositely charged polyelectrolytes. Specifically, in this study, we consider the IP coating process an experimental success for a membrane sample with a NaCl rejection >85%. The IP success rate is defined as the percentage of the samples with a NaCl rejection of >85% within a studied group. The purpose of the intermediate layer is to increase the success rate of IP on the inner surface of the hollow fibers, typically a challenging task due to the cylindrical shape of the fibers. After the application of IP, the pure water permeance and NaCl rejection of the nascent membranes were tested to determine the success rate of IP. The IP success rate was 86–100% for the hollow fibers (HF) with intermediate layer, significantly higher than the 29% success rate achieved for IP on the support without intermediate layer. This surface modification approach is simple, time-efficient, and effective without any need for post-IP optimization that opens up new avenues for further developments for IP based dense hollow fiber membranes
    corecore